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The seed production sector as well as agriculture need to upgrade from the classical testing methods to
quick and non-destructive methods for evaluating the quality of the products. Spectral imaging modalities,
a synergistic integration of spectroscopy and imaging technologies, have emerged to address quality
evaluation challenges by setting forward various designs with useful and practical applications in food and
agriculture. Multispectral imaging (MSI) systems encompass light sources providing a restricted number of
wavelengths, which will dispense the specific spectra. With the advantage of obtaining spatial and spectral
data across a wide range of the electromagnetic spectrum, the futuristic multispectral imaging in combination
with different multivariate chemometric analysis scenarios has been successfully implemented not only for
food quality and safety control purposes, but also in handling critical research challenges in seed science
and technology. This review will provide an overview of all current methods for acquiring, processing and
reproducing multispectral images for use in a various kinds of seed quality assessment applications.
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ABSTRACT

Introduction
Seed quality is a multi-constitute characterization of

seeds, which comprise of varietal and analytical purity,
germination capacity, vigour, seed health and uniformity.
Conventionally, in most of the quality control programmes
morphological and phenotypic attributes that are recorded
by employing physical and chemical along with visual
inspection methods, the biochemical, genotypic and
molecular markers are destructive and time consuming.
The visual inspection of seeds individually by workers is
very monotonous and a time- consuming process and it
is sometimes less than satisfactory, which in succession
results in inspection errors (Li et al., 2018).

In order to improve seed quality analysis both the
Association of Official Seed Analysts (AOSA) and the
International Seed Testing Association (ISTA)
acknowledge the significance of creating new
technologies for quick, non-destructive seed quality
determination and lower the overall cost of labor-intensive

tests (Boelt et al., 2018). Recently, imaging techniques
are gaining a lot of interest for monitoring and evaluating
quality have recently drawn a lot of interest in the seed
industry (ElMasry et al., 2009). Imaging-based methods
can be regarded as effective tools for testing and assessing
individual seeds in order to examine the imbibition process,
look into the germination capacity, and identify changes
in vigor between seed lots, in addition to their excellent
ability to assess the overall quality parameters of seed
lots (Dell’Aquila et al., 2007). Currently, the availability
of inexpensive imaging equipment, the increasing
processing capacity of modern computers, and rising
interest in agriculture are all contributing to the growing
use of imaging in many agricultural applications.
Multispectral imaging

Multispectral imaging (MSI) renders calibrated
reflectance measurements at several ‘discrete’
wavelength bands distributed over a wide spectral range,
from ultraviolet (UV) to near infrared (NIR) region.
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Multispectral imaging of seeds is done by imaging their
surface reflectance at selected wavelengths from 365 to
970 nm. It measures the reflectance at fewer (<50) and
wider discrete wavelengths (10-50 nm). The subsequent
multispectral image is a stack of numerous greyscale sub-
images representing the precise relative light reflectance
at numerous non-overlapping “discrete” wavelength
bands spanning a range beyond human vision.
Consequently, the process of obtaining a multispectral
image is sometimes referred to as multi-channel imaging
due to its ability to record picture data at particular multi-
wavelengths throughout the electromagnetic spectrum,
which offers the details needed for the identification and
characterization of the constituent parts of the seeds under
study (Panagou et al., 2014). According to variations in
spectral signature and common morphological
characteristics, this technology may be used in quality
assessment of different agricultural products.
Methods of image acquisition

All spectral imaging systems, must collect data from
target objects in the spatial and spectral domains, thus
making it critical to provide an acquisition mechanism
that allows the system to simultaneously scan the sample
in both directions and record light intensity at each pixel
at all wavelengths. On the basis of applications and the
accessible optical devices, there are three methods of
acquiring spectral imaging, viz. point scanning
(whiskbroom scanning), line scanning (push-broom
scanning) or area scanning (wavelength or plane
scanning) (ElMasry et al., 2019).

The majority of applications use area scanning with
a charged coupled device (CCD) imaging sensor and
sequentially illuminating the seeds with LEDs in the
desired waveband to acquire images. These wavebands
must to be carefully selected in order to correspond with
the application or research subject (Sendin et al., 2018).
But a majority of MSI applications employ the same
multipurpose MSI technology (use specific 19 bands),
where the company specifies the spectral range and
wavebands.

In spite of the methods of acquisition, a three-
dimensional block of data known as the “data cube” or
“spectral cube” Rijk is created at the conclusion of the
scanning procedures for the complete target sample. It
has two spatial dimensions (x, y) and one spectral
dimension (ë). The first spatial direction is represented
by the i index, the second spatial dimension by the j index,
and the spectral dimension by the k index.
Illumination-based MSI systems

An array of twelve LEDs with various nominal

emission wavelengths operates this demonstrative device.
A computer using a USB link may automatically regulate
the emission intensity of LEDs that are installed on a
printed circuit board (PCB) (Cumpson et al., 2016). Using
a preprogrammed microcontroller, each LED is
sequentially turned on for a predetermined amount of
time during image acquisition and timed with the camera
trigger. As a consequence of turning on the LEDs one at
a time, the monochromatic camera captured 12 separate
greyscale photos, which were then combined to create a
single multispectral image. The VideometerLab Company
(Videometer A/S, Hørsholm, Denmark) currently
manufactures similar designs that follow the same
principle
VideometerLab Instrument

This device comprises of a 5 mega pixel CCD camera
that is positioned within the topmost layer of an integrating
sphere. The sphere is coated with a highly white paint
that diffuses light, and narrowband high-power LEDs are
positioned at the rim to provide uniform and diffuse lighting
of the sample at the bottom port of the sphere reflection.
Sequential strobes are produced by the LEDs at the
following 19 wavelengths: 375, 405, 435, 450, 470, 505,
525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 940
and 970 (with a backlight at 625 nm below the sample
holder). The diodes emit a narrow band of light confirming
that only light of the specific wavelength is present when
an image is acquired. These designs have been
extensively used for various purposes, including quality
tests of numerous products as well as seed science and
technology (Panagou et al., 2014). This kind of LED
illumination-based multispectral imaging system has
received a lot of attention lately because of its
affordability, quick controlled switching capability, and
durability (Jaillais et al., 2015).
Workflow of MSI system

The workflow for MSI of seeds in general
encompasses the following six steps:

(1) Preparation of sample
(2) Calibration of MSI system
(3) Acquisition of multispectral images
(4) Segmentation of ROIs
(5) Feature extraction from the segmented ROIs
(6) Analysis of the extracted features
Preparation of sample : Multiple seeds can be

imaged simultaneously, due to the spatial nature of the
multispectral images. Seeds are placed in a Petri dish by
placing them equidistant from each other. Double-sided
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tape can be used to secure seeds in the Petri dish to keep
them from moving (Rego et al., 2020). When placing the
seeds, it is important to consider which side is most
relevant for the application and thus should be facing the
imaging sensor and in applications where multiple sides
are equally relevant images from multiple sides can be
achieved by imaging each seed multiple times (Salimi et
al., 2019). In situations where the seeds don’t need any
extra preparation or manual evaluation, a conveyer belt
can be utilized to automate the imaging procedure.

Calibration of MSI System: The MSI system must
be calibrated prior to image acquisition which includes,
both a radiometric calibration and a geometric calibration,
which is achieved by imaging calibration targets with well-
known reflectance and geometry (Hu et al., 2020).
Calibration is carried out by using the three consecutive
plates: a white plate for background correction, a dark
plate for reflectance correction, and a dot plate for
geometric pixel position alignment calibration before a
light setup calibration.

Acquisition of multispectral images : The MSI
system is prepared to image the prepared samples after
calibration. A measurement’s result is a multispectral
image, or “data cube”, made up of W × H pixels × C
channels, where W and H stand for width and height of
the image, respectively, and C channels are included in
each pixel to represent the discrete multispectral bands.
Pixel values indicate the chemistry above and below the
surface of a seed in the tiny area that the pixel covers
when a pixel position intersects with a seed (Hansen et
al., 2016).

Segmentation of Regions-of-interest : The
multispectral images consist of ROIs along with
background items like the conveyer belt, Petri dish,
background material, and other inert stuff. The
segmentation process involves extracting the ROIs from
the image and separating them from the background items.
Using a simple threshold in a single channel, a sum of the
channels, or on a score image produced CDA or PCA,
segmentation can frequently be completed with a high
contrast background material and enough space
surrounding each seed.

Feature Extraction from the segmented ROIs
: The characteristics, which comprise four classes based
on how they characterize the seed and connect to the
multispectral image, are reflectance, color, shape, and
texture. They are usually extracted from the whole seed,
but they can also concentrate on a particular area of the
seed, particularly the endosperm region (De la Fuente et
al., 2017). The reflectance and color features indicate

the intensity of each of color or reflectance of the seed
and are related to the spectral dimension (C). In order to
extract a trimmed mean (Olesen et al., 2015) or a ratio
of pixels over a specified threshold (Boelt et al., 2018),
the reflectance features either treat the wavebands
separately by obtaining first-order derivatives from the
raw wavebands (Shetty et al., 2012) or combine them
using a CDA transformation. On the other hand, the color
features extract first-order characteristics from a well-
defined color space, such as CIELAB (Shrestha et al.,
2015), by combining wavebands that overlap with the
human visual spectrum. Shape features are produced
from the binary picture created during segmentation and
are related to the spatial dimensions (W × H). They consist
of basic descriptors like area, breadth, and length (Liu et
al., 2014), as well as more intricate ones like elliptical
fitting parameters and similarity to well-known basic forms
like circles, ellipses and rectangles. Through the
quantification of the spatial change in intensity across
the seed, the texture features integrate the spectral and
spatial dimensions. Changes in color in the seed surface
pattern and slight variations in the surface structure (hills
and valleys) can both contribute to this spatial variation
in intensity.

Somewhat depending on the application, different
features can be derived. The reflectance properties, as
well as some color and texture features are used in all
applications pertaining to the presence of fungi.
Conversely, varietal purity applications almost exclusively
use form, color, and reflectance parameters; Reflectance
is preferred in applications pertaining to seed viability and
vigor, and color and form are less important.

Analysis of the extracted features : A descriptive
statistic and data modeling are frequently included in the
multivariate data analysis of the extracted features. In
MSI, a variety of linear and non-linear techniques have
been applied to data modeling. The most popular
techniques are partial least squares, support vector
machines (SVM), PCA, CDA and to a lesser extent,
neural networks and k-nearest neighbors.
Applications of MSI for seed quality assessment

This technique has demonstrated encouraging
outcomes in identifying many attributes related to seed
quality. By the way, using this technology to evaluate
seed quality is mostly dependent on having a thorough
grasp of the principles of the technology and knowing
how to connect criteria related to seed quality with the
data found in the images.

Varietal discrimination and seed purity :
Multispectral imaging has been used in a number of
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species, including rice (Oryza sativa L.), soybeans, and
tomatoes (Solanum lycopersicum L.) (Boelt et al.,
2018). Subsequent research on pepper (Capsicum
annuum L.) and alfalfa has been documented (Yang et
al., 2020; Li et al., 2020).

A recent study evaluated the genetic diversity in a
group of pigmented rice accessions from the Philippines
using MSI by Mbanjo et al. (2019). The research found
colored rice accessions, which are a useful genetic
resource for enhancing commercial rice types in the
future.

Vrešak et al.  (2016) used a VideometerLab
multispectral imaging system with 19 bands (375–950
nm) to acquire multispectral images of seed samples for
the purpose of differentiating wheat and triticale varieties.

A genebank provided twelve different geographically
derived alfalfa cultivars (Medicago sativa L.) by Yang et
al. (2020). To categorize cultivars, several multivariate
data analyses were performed. The accuracy of
categorization was only 42-44% when morphological
features were used alone; however, when spectral
features were included, the accuracy increased to 92-
23%.

Presence of Inert Matter and other seeds :
According to Sendin et al. (2018), MSI can be used to
identify plant debris and other crop seeds in white maize
(Zea maize L.). Seeds of several crop species were
accurately classified such as sunflower (Helianthus
annuus L.), sorghum (Sorghum bicolor L.), wheat
(Triticum aestivum L.) and soybean. Plant debris was
also classified with 100% accuracy.

The distinction of sweet clover (Melilotus ssp.) in
alfalfa with a classification accuracy of >99% by MSI
was recently reported by Hu et al. (2020).

Prediction of pest and mechanical damage : The
identification of the wheat grain moth (Sitotroga
cerealella) has been tested using X-ray and MSI by
França-Silva et al. (2020). While the study demonstrated
the potential of MSI for recognizing eggs on the seed
surface.

Recently, research on maize, sweet corn, and
soybeans shows that damaged seeds are more likely to
result in abnormal seedlings (Chomontowski et al., 2020).
Salimi et al. (2019) conducted a study that demonstrated
the potential of MSI in categorizing different forms of
damage without the need for further analytical
assessment. 82% total accuracy in damage class
differentiation was made possible using a classification
model based on surface features generated from MSI

and multivariate data processing.
Prediction of seed viability and vigour : Olesen

et al. (2015) demonstrated a strong association between
the outcomes of tetrazolium tests and MSI, and they were
able to identify live castor bean (Ricinus cummunis L.)
seeds with 92% accuracy.

Moreover, Liu et al. (2019) used both spectral and
morphological parameters in MSI to find a good prediction
accuracy (91-92%) for high-quality watermelon
(Citrullus lanatus Thunb.) seed in two different types.

A study predicting spinach germination ability by
Shetty et al. (2012) also supports the high divergence
between viable and non-viable seed in mean intensity
reflection in the wavelength interval 375–970 nm, with
the highest difference in the NIR-regions.

In order to identify hard seeds, Hu et al. (2020) used
MSI to analyze the seeds of six different Fabaceae
species. When paired with multivariate data analysis, MSI
can detect hard seeds for three species (sweet clover,
alfalfa, and galega (Galega officinalis L.) with accuracy
ranges of 88–92%; for the remaining three species, the
results are ambiguous. In comparison to non-hard seeds,
hard seeds in all three species under investigation
displayed a higher reflectance.

In cowpea (ElMasry et al., 2019) and spinach (Olesen
et al., 2011), single seed NIRS spectroscopy and MSI
have been used to evaluate viability following artificial
seed aging or controlled degradation. Following artificial
aging of both seed lots, two lots of spinach with viability
percentages of 90% and 97% were selected for single
seed NIRS analysis (Olesen et al., 2011). Cowpea was
artificially aged in four treatments (with aging intervals
of 24–96 hours) to produce variance in germination
performance (ElMasry et al., 2019).

The physiological potential of Jatropha curcas L.
seeds is strongly correlated with both MSI and X-ray
measurements, according to a recent study described by
Bianchini et al. (2021). The researchers examined both
viability and vigor, and they discovered that reflectance
data at the 940 nm NIR wavelength had an accuracy of
96%.

Detection of fungal infection and Seed Health :
Using a visual scoring system as a reference, Weng et
al. (2020) artificially inoculated rice with uninfected seeds
of Ustilaginoidea virens. Nevertheless, a PCA found it
challenging to distinguish between the healthy and slightly
diseased seeds.

Olesen et al. (2011) used a multispectral imaging
system (395–970 nm) to distinguish between healthy and
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infected seeds with different Fusarium strains
(Verticillium spp., Fusarium spp., Stemphylium
botryosum,  Cladosporium spp. and Alternaria
alternate). This resulted in an accuracy of 26–88% for
separating seeds that were not infected from those that
were infected with Fusarium spp.

Sendin et al. (2018) employed a multispectral imaging
system with 19 discrete wavelengths in the UV, visible
and NIR ranges (375–970 nm) of another investigation
to identify various abnormalities in maize kernels.
Exceptional classification accuracy was demonstrated
by the PLS-DA model, which ranged from 83% to 100%.

Conclusion
The robust integration between spatial imaging,

spectroscopy, and chemometrics tools makes the
technique an ideal tool for studying various morphological,
physicochemical, and physiological properties of seeds.
This remarkable ability has encouraged researchers to
collaborate together to create quick, precise and
affordable spectrum devices that can be used in the grain
and seed industries. Based on the applications that have
been presented and examined, MSI has the potential to
be used for assessing seed quality, especially for
components related to surface structure and chemical
composition, seed color, morphology and size, the
detection and characterization of fungi, insect damage,
varietal purity and elements related to seed growth and
quality issues are all possible using the nondestructive,
dependable and quick tool. It is anticipated that the
multispectral imaging technique can be transferred from
lab settings to real-world applications in the form of real-
time seed monitoring systems that fulfill the demands of
contemporary industrial control and sorting systems,
provided that all limitations and difficulties encountered
by this technology are carefully considered. This
objective will advance and this technology will become
more appealing for potential uses in quality control and
automatic seed inspection as a result of the declining
cost and rising speed and power of computer hardware
and artificial intelligence.
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